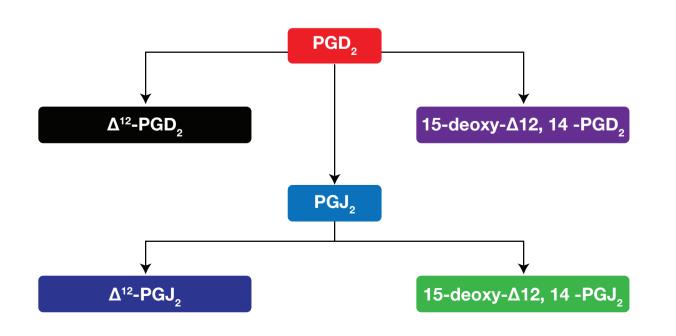
GB001 Potently Inhibits PGD₂ Metabolite-Induced DP₂-Mediated Cell Signaling and Eosinophil Activation

Susan Murphy, Taylor Ismaili, Kristen Taylor Meadows, Sunil Sahdeo, Hector Ortega, Laura Carter, Luisa Salter-Cid Gossamer Bio, Inc.; San Diego, CA

BACKGROUND

- GB001 is an oral antagonist of the prostaglandin D₂ receptor 2 (DP₂) in development for the treatment of moderatesevere asthma (NCT03683576) and chronic rhinosinusitis (NCT03956862)
- DP₂ antagonists block receptor activation and intracellular signaling induced by prostaglandin D₂ (PGD₂), which may inhibit recruitment of airway eosinophils and reduce airway inflammation¹
- PGD₂ has multiple metabolites which can also activate and stimulate pathways downstream of DP₂


OBJECTIVE

 Assess GB001 potency against PGD₂ and PGD₂ metabolite induced cell signaling and eosinophil activation

METHODS

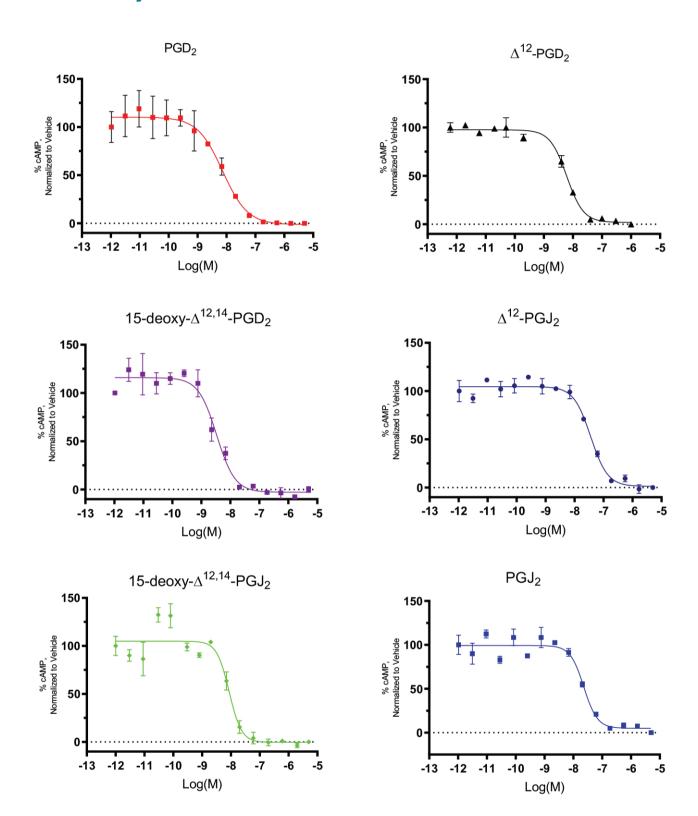
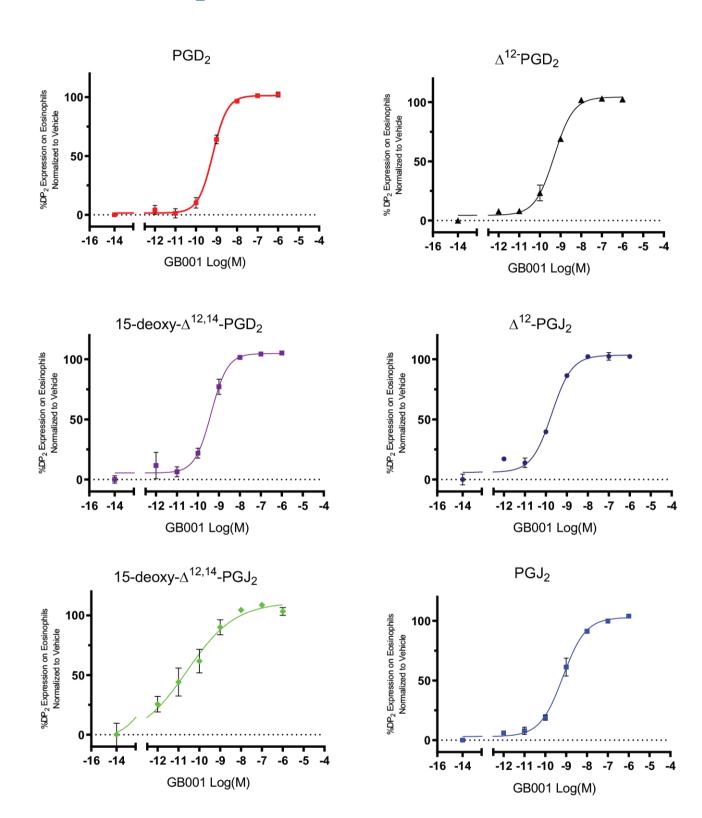

- G-protein activation assays (cAMP) were performed in CHO cells overexpressing human DP₂ (CHO-K1, CRTH2 Gi cell line from Discover X)
- DP₂ internalization on eosinophils in human whole blood was determined by antibody staining and flow cytometry
- In both assays, cell lines and human whole blood were pretreated with GB001 and then incubated with PGD₂ or one of the following metabolites at pre-determined EC₈₀ concentrations: Δ12-PGD₂, 15-deoxy-Δ12, 14-PGD₂, PGJ₂, Δ12-PGJ₂ and 15-deoxy-Δ12, 14-PGJ₂

Figure 1. PGD₂ and its major metabolites

RESULTS


Figure 2. GB001 inhibits PGD₂ metabolite activity in a cAMP assay

Concentration-dependent inhibition by GB001 on Gi-mediated cAMP, induced by metabolites of prostaglandin D_2 (PGD₂) in CHO-K1 DP₂ cells. Shown here is a representative data set from n = 2 experiments. Data are presented as mean \pm SD.

- GB001 inhibits the activity of PGD_2 in the cAMP assay with an average IC_{50} of 4.3 nM
- GB001 inhibits the activity of all PGD_2 metabolites with IC_{50} values between 2.5 and 5.0 nM

Figure 3. GB001 inhibits PGD₂ metabolite activity in a human whole blood DP₂ internalization assay

Concentration-dependent inhibition of DP_2 receptor internalization by GB001 that is otherwise induced by metabolites of prostaglandin D_2 (PGD₂). Shown here is a representative data set from n = 5 experiments. Data are presented as mean \pm SD.

- GB001 inhibits PGD₂-induced receptor internalization with an IC₅₀ of 1.63 nM
- GB001 inhibits the activity of all PGD₂ metabolites with IC₅₀ values ranging from 0.3 to 0.67 nM

Table 1. IC_{50} for GB001 in cAMP and DP_2 internalization assays for all metabolites

	сАМР			Internalization			
Agonist/Agonist Metabolite	Concentration of Agonist Tested EC ₈₀ (µM)	GB001 IC ₅₀ (nM) Range	n	Concentration of Agonist Tested EC ₈₀ (µM)	GB001 IC ₅₀ (nM)	n	
PGD ₂	0.1	1.2 - 7.4	2	1	1.63 ± 1.1	5	
Δ 12-PGD ₂	0.1	0.8 - 3.8	2	0.5	.67 ± .32	5	
15-deoxy-∆12, 14-PGD ₂	0.1	2.6 – 3.4	2	1	.6 ± .3	5	
Δ 12-PGJ $_2$	1.0	11.2 – 36.1	2	2.5	.3 ± .08	5	
15-deoxy-∆12, 14-PGJ ₂	0.3	1.3 – 8.7	2	1.5	.14 ± .1	5	
PGJ ₂	0.3	2.0 - 23.0	2	6	.6 ± .3	5	

Data for cAMP is presented as a range for n = 2; data for internalization (n = 5) is presented as mean \pm SD

CONCLUSION

- GB001 is a potent antagonist of PGD₂ and PGD₂
 metabolites and demonstrates similar potencies against all
 activators of the DP₂ receptor
- Potency data was generated in two independent assays, a cAMP signaling assay in human overexpressing DP₂ CHO cells and in human eosinophils in a whole blood assay
- GB001 inhibition of PGD₂ metabolite-induced migration and signaling may be beneficial in controlling PGD₂-mediated inflammation in allergic disease and asthma

REFERENCES

1. Asano K, Sagara H, Ichinose M, et al. *J Allergy Clin Immunol Pract*. 2019 Nov 26. pii: S2213-2198(19)30955-9. doi: 10.1016/j.jaip.2019.11.016.

DISCLOSURES

SM, TI, KTM, SS, HO, LC, and LSC are employed by Gossamer Bio, Inc.

